

Newington College **2004**

TRIAL HSC EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is proved at the back of this paper
- All necessary working should be shown in every question

Total marks: 120

- Attempt Questions 1–10
- All questions are of equal value

Question 1 (12 marks)

Marks

(a) Find the value of

1

$$\log_e 3.5 - \frac{\pi}{\sqrt{e^3}},$$

correcting your answer to 3 significant figures.

2

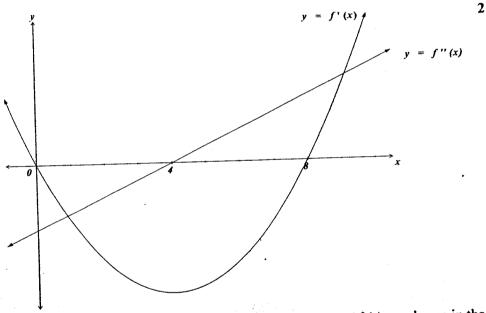
(b) Find the primitive of x^{-2} .

(c) Solve $\frac{3t}{t-5} = \frac{2}{5}.$

2

(d) Jai sold his car for \$5400, which was 18% less than its original cost.

2


How much did the car originally cost?

3

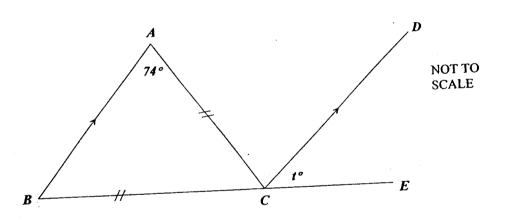
(e) Solve

 $|2-3x|\geq 1.$

(f)

The graphs of the first and second derivatives of the curve y = f(x) are shown in the diagram.

Write down the x coordinates of the stationary points and determine their nature.


3

Question 2 (12 marks) Use a SEPARATE writing booklet. Marks

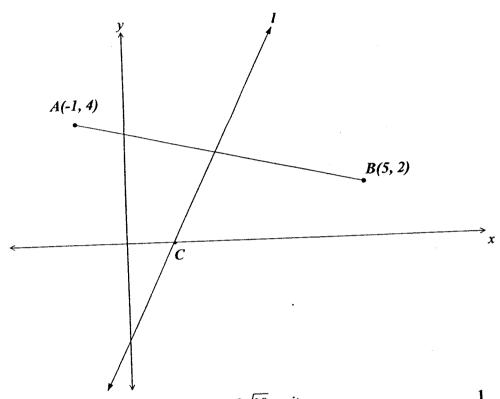
- (a) Factorise $1-27a^3$.
- (b) Differentiate the following with respect to x:
 - (i) $y = \sin^3 x$
 - (ii) $y = \log_e(3x+1)$
 - (iii) $y = 2e^{-4x}$
- (c) Find the value of p

(i)
$$\log\left(\frac{1}{x^2}\right) = p \log x$$

- (ii) $6^p = 3$, correct your answer to 2 decimal places. 2
- (d) Find the value of the pronumeral, giving reasons.

(e) Find all the real numbers x which satisfy the equation

$$x^4 = 4\left(x^2 + 8\right)$$


Questi

Newin

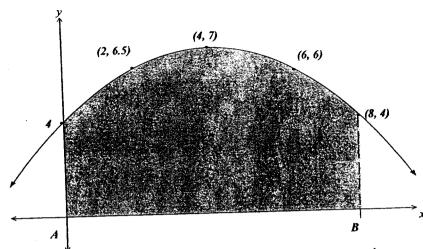
(a)

Question 3 (12 marks) Use a SEPARATE writing booklet. Marks

(a) The diagram below shows the points A(-1, 4) and B(5, 2). The line l has the equation 3x - y - 3 = 0 and cuts the x-axis at C.

- (i) Show that the length of AB is $2\sqrt{10}$ units.
- (ii) Find the co-ordinates of M, the midpoint of AB.
- (iii) Find the gradient of AB.
- (iv) Show that the equation of AB is x + 3y 11 = 0.
- (v) Prove that l is the perpendicular bisector of AB.

1


- (vi) Find the co-ordinates of C.
- (vii) Write down the equation of the circle with AB as the diameter.

Question 3 (continued)

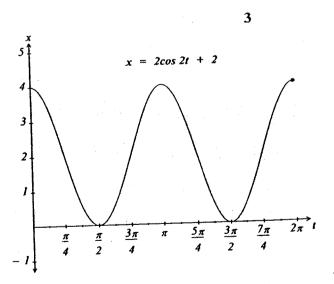
Marks

(b)

3

Using Simpson's Rule with 5 function values, approximate the area under the curve y = f(x) from x = A to x = B, as shown in the diagram above.

(c) Find
$$\int \frac{3x^2}{1+x^3} dx$$
.


1

Question 4 (12 marks) Use a SEPARATE writing booklet.

(a) A particle moves according to the displacement function $x = 2\cos 2t + 2$ for $0 \le t \le 2\pi$, for x metres and t seconds, as shown at right:

Find (i) when the particle is at rest.

(ii) when the particle is moving away from the origin.

Question 4 continues on page 5

uestion 4 (

uestion 4 (c

ewington (

has tl Find

e) Evalu

(d) KLM KL =

respe

the m

Prove

Question 5

(a) Cons

(i)

(ii)

(iii)

(iv)

(v)

Juestion 4 (continued)

Marks

3

- b) A parabola, whose equation is of the form $y = Ax^2$ (where A is a constant) 3 has the line 20x y + 20 = 0 as a tangent. Find the value of A.
- (c) Evaluate $\int_{1}^{2} \frac{1}{3} e^{2.5x} dx$
- (d) KLM is an isosceles triangle with KL = KM. The lines NP and OP are constructed perpendicular to KL and KM respectively, as shown, from the point P, the midpoint of LM.

Not To Scale

Prove $x^{\circ} = y^{\circ}$.

Question 5 (12 marks) Use a SEPARATE writing booklet.

- (a) Consider the function $f(x) = (x-4)(x+2)^2$
 - (i) Show that $f'(x) = 3x^2 12$.

2

- (ii) Find the co-ordinates of the stationary points of the curve y = f(x) and determine their nature.
- (iii) Find any point(s) of inflexion.

1

- (iv) Sketch the graph of the curve y = f(x) showing all intercepts, 2 stationary points and points of inflexion.
- (v) Find all the values of x for which the graph y = f(x) is concave up.

Question 5 continues on page 6

Question 5 (continued)

Marks

3

(b) The first two terms of a geometric sequence are $\sqrt{3}-1$ and $\sqrt{3}+1$. Find the common ratio and the fourth term of this sequence in simplest

surd form.

Discuss whether the geometric sequence has a limiting sum.

Question 6 (12 marks) Use a SEPARATE writing booklet.

- (a) What is the domain and range of $y = \sqrt{5-2x}$?
- (b) Find the value of C if the equation $4x^2 12x + C = 0$ has equal roots. 2
- (c) If α and β are the roots of the quadratic equation $x^2 5x 4 = 0$, find the values of:

(i)
$$\alpha + \beta$$
.

- (ii) $\alpha\beta$.
- (iii) $\frac{1}{\alpha} + \frac{1}{\beta}$.
- (iv) $\alpha^2 + \beta^2$.
- (d) For the parabola $x^2 = 8(y-3)$, find the
 - (i) co-ordinates of the vertex.
 - (ii) focal length.
 - (iii) equation of the directrix.

Question

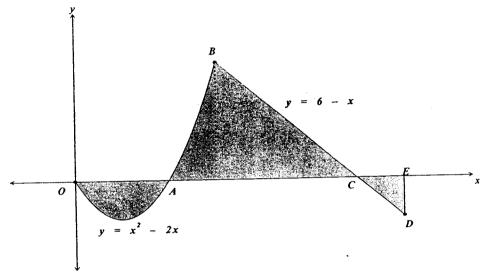
a) Th

cui

(i)

(ii

(ii


(b)

(c)

Question 7 (12 marks) Use a SEPARATE writing booklet.

Marks

- (a) The shaded region *OABCDE* is bounded by the lines x = 0 and x = 7, the curve $y = x^2 2x$, the line y = 6 x and the x-axis.
 - (i) Find the co-ordinates of the points A, C and D.
 - (ii) Show that the co-ordinates of B are (3, 3).
 - (iii) Calculate the area of the shaded region OABCDE.

(b) If $f(x) = x^2$ then $f(x+3) \neq f(x) + f(3)$.

1

Find a function g(x), such that g(x+3) = g(x) + g(3).

- (c) A person saves \$10000 by investing \$100 at the beginning of each month at 6% p.a., compounded monthly.
 - (i) Show that the expression for the amount saved by the end of the first 1 three months is given by $A_3 = \$100(1.005^3 + 1.005^2 + 1.005)$.
 - (ii) Hence, or otherwise, find the number of months required to save 2 \$10000.

Ouestio

(b)

Use a SEPARATE writing booklet. (12 marks) Question 8

Marks

Differentiate $\log_e(\cos^3 x)$ with respect to x. (a)

3

If $\cos \theta = \frac{8}{17}$ and $\sin \theta < 0$, find the exact values for (b)

2

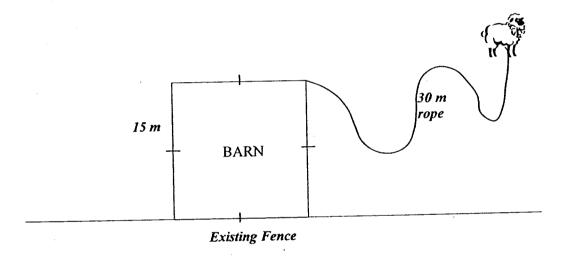
 $\sin \theta$ (i)

1

- $\cot \theta$ (ii)
- Find the point of intersection of the two curves $y = x^2$ and $y = \frac{8}{x}$. 1 (i) (c)
 - Find the gradients of the tangents to both the curves at this point. 2 (ii)
 - Find the angles of inclination of both tangents to the positive x-axis 2 (iii) (Give your answer to the nearest degree). 1
 - Hence find the acute angle between the two tangents. (iv)

Use a SEPARATE writing booklet. (12 marks) Question 9

- 2 On the same set of axes sketch y = |2x - 3| and y = -x. (i) (a)
 - 1 Hence, or otherwise, solve |2x-3| < -x. (ii)


Question 9 continues on page 9

Question 9 (continued)

Marks

3

- (b) A sheep is tied to the side of a square shaped barn as shown in the diagram.
 The rope is 30 m long and the side length of the barn is 15m. On one side of the barn is a fence line as shown.
 - (i) Draw a diagram that shows the entire area over which the sheep can graze. (Not including the Barn)
 - (ii) If the sheep can graze over the entire area but not inside the barn find 4the maximum grazing area available for the sheep.

(c) The population of rats in a barn increases exponentially according to the formula $P = P_o e^{kt}$, where P_o is the original population and t is the time in months and k is a constant.

If the initial population of 20 increases to 100 in 3 months, how long will it take to reach a population in excess of 2000 at this rate?

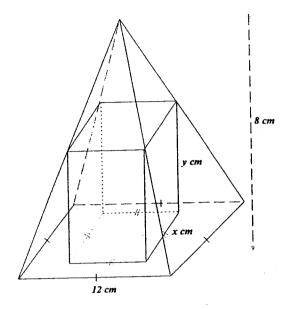
(v)

greater than 99%.

2

Questio

(b)


Quest	tion 10	(12 marks)	Use a SEPARATE writing booklet.	Marks		
(a)	The pr	obability of to	ssing a 5 on a biased six-sided die is $\frac{2}{7}$. The die i	S		
	tossed	3 times. Find	the probability of tossing:			
		one 5.			1	
	(i)	one J.			1	
	(ii)	no 5's.			1	
	(iii)	at least one 5	5.		1	
	The !	oiased die is to	ssed n times.			
	(iv) Write an ex		expression for the probability of tossing at least one 5.		1	
	(**)		_		_	

Question 10 continues on page 11

Find the value of n if the probability of tossing at least one 5 is

Question 10 (continued)

(b) A rectangular prism is constructed within a square-based triangular pyramid as shown in the diagram:

(i) Using similar triangles, or otherwise, show that 2

$$y = 8 - \frac{2x}{3}.$$

(ii) Let the volume of the rectangular prism be V cm³, then show that 2

$$\frac{dV}{dx} = 2x(8-x).$$

(iii) Hence, find the maximum volume of the rectangular prism.

End of paper

(12 marks) Question 1

Marks

(a)
$$\log_e 3.5 - \frac{\pi}{\sqrt{e^3}} = 0.552$$

(correct to 3 significant figures)

1

(b)

$$\int x^{-2} dx = (-1)x^{-1} + c$$
$$= -\frac{1}{x} + c$$

2

$$=-\frac{1}{x}+\epsilon$$

(c)

$$\frac{3t}{t-5} = \frac{2}{5}$$
$$15t = 2(t-5)$$

2

$$15t = 2t - 10$$
.

$$13t = -10$$

$$t = -\frac{10}{13}$$

(d)

82% of original cost =
$$$5400$$

of original cost = \$5400/82

2

. 3

100% of original cost = $$5400 \times 100/82$

= \$6585.37 (to nearest cent)

(e)

$$|2-3x|\geq 1$$

$$2-3x \ge 1$$
 or $-(2-3x) \ge 1$

 $3x \le 1 \quad \text{or} \quad -2 + 3x \ge 1$

$$x \le \frac{1}{3}$$
 or $3x \ge 3$

$$x \le \frac{1}{3}$$
 or $x \ge 1$

f'(x) = 0 at x = 0 and x = 8, hence these are stationary points. (f)

At x = 0, f''(x) < 0, hence this is a maximum turning point, and at x = 8,

f''(x) > 0, so this is a minimum turning point.

2

Start this question on a new page (12 marks) **Question 2**

Marks

(a)
$$1-27a^3 = (1-3a)(1+3a+9a^2)$$
.

1

1

(i) (b)

$$y = \sin^3 x$$

 $\frac{dy}{dx} = \cos x \times 3\sin^2 x$

$$\frac{dy}{dx} = 3\cos x \sin^2 x$$

(ii)

$$y = \log_e \left(3x + 1 \right)$$

$$\frac{dy}{dx} = 3 \times \frac{1}{3x+1}$$

$$\frac{dy}{dx} = \frac{3}{3x+1}$$

(iii)

$$v = 2e^{-4x}$$

$$\frac{dy}{dx} = 2 \times (-4)e^{-4x}$$

$$\frac{dy}{dx} = -8e^{-4x}$$

1

1

(c)

(i)

$$\log\left(\frac{1}{x^2}\right) = p\log x$$

$$\frac{1}{2} = x^p$$

$$x^{-2} = x^p$$

$$p = -2$$

1

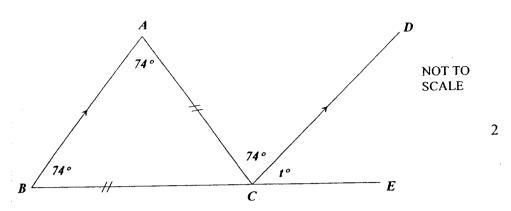
(ii)

$$6^p = 3$$

$$p = \frac{\log 3}{\log 6}$$

p = 0.61 (correct to 2 decimal places)

2


(d)

(e)

Questi

(a)

(d)

$$\angle ABC = \angle BAC = 74^{\circ}$$
 (equal angles opp equal sides)
 $\angle BAC = \angle ACD = 74^{\circ}$ (alt angles equal, $BA \parallel CD$)
 $\angle DCE = \angle BAC + \angle ABC - \angle ACD$ (exterior angle theorem)
 $t = 74$

(e)

$$x^{4} = 4(x^{2} + 8)$$

$$x^{4} - 4x^{2} - 32 = 0$$

$$(x^{2} - 8)(x^{2} + 4) = 0$$

$$(x - \sqrt{8})(x + \sqrt{8})(x^{2} + 4) = 0$$

$$x = \pm \sqrt{8}$$
3

Question 3 (12 marks)

(a)

(i)
$$d_{AB} = \sqrt{(5+1)^2 + (2-4)^2}$$

$$d_{AB} = \sqrt{36+4}$$

$$d_{AB} = 2\sqrt{10}$$

(ii)
$$M = \left(\frac{-1+5}{2}, \frac{4+2}{2}\right) = (2,3)$$

(iii)
$$m_{AB} = \frac{4-2}{-1-5} = \frac{2}{-6} = -\frac{1}{3}$$

SC Trial

estion

Question 3 (12 marks)

(a) (iv)

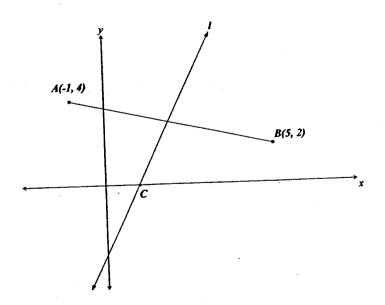
$$y - y_1 = m_{AB}(x - x_1)$$

$$y - 2 = -\frac{1}{3}(x - 5)$$

$$3y - 6 = -x + 5$$

$$x + 3y - 11 = 0$$

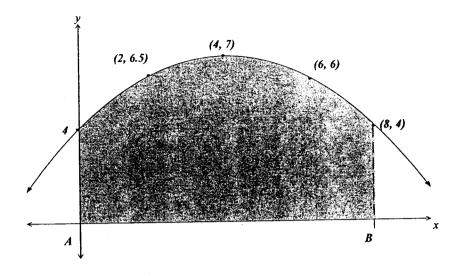
(v)


At
$$M(2,3)$$
, for $l: 3x - y - 3 = 0$
 $LHS = 3(2) - 3 - 3 = 0$
 $RHS = 0$
So, M lies on l .
 $m_l = 3$
 $m_{AB} \times m_l = 3 \times \left(-\frac{1}{3}\right) = -1$

So, *l* is perpendicular bisector.

(vi) At C, let y = 0, 3x - y - 3 = 0 3x - 3 = 0x = 1

(vii) If AB is the diameter then M is the centre i.e.(2, 3) and radius is


$$\frac{1}{2}AB = \frac{1}{2}(2\sqrt{10}) = \sqrt{10}$$
, so equation of circle is
$$(x-2)^2 + (y-3)^2 = 10$$

Q3 cont.../page 4

uestion 3 (cont.)

b)

х	0	2	4	6	8
f(x)	4	6.5	7	6	4

Area
$$\cong \frac{h}{3} \{ y_0 + 4y_1 + 2y_2 + 4y_3 + y_4 \}$$
, where $h = 2$

$$\cong \frac{2}{3} \{ 4 + 4 \times 6.5 + 2 \times 7 + 4 \times 6 + 4 \}$$

$$\cong \frac{2}{3} \{ 4 + 26 + 14 + 24 + 4 \}$$

$$\cong 48 \text{ units}^2$$

(c)
$$\int \frac{3x^2}{1+x^3} dx = \log_e(1+x^3) + c.$$

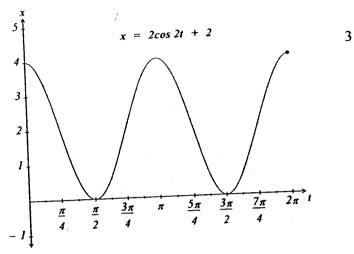
Q4.../page6

Start this question on a new page (12 marks) **Question 4**

(a)

At rest, if v = 0, (i) $x = 2\cos 2t + 2$ $\frac{dx}{dt} = v$

 $\sin 2t = 0$


$$dt$$

$$v = -4\sin 2t$$

$$-4\sin 2t = 0$$

$$2t = 0, \pi, 2\pi, 3\pi, 4\pi$$

$$t=0,\frac{\pi}{2},\pi,\frac{3\pi}{2},2\pi$$

From the graph, if (ii)

displacement increases then the object is moving away from the origin,

i.e.
$$\frac{\pi}{2} \le t \le \pi, \frac{3\pi}{2} \le t \le 2\pi.$$

(b)

$$y = Ax^2$$
$$y = 20x + 20$$

$$y = 20x + 20$$

 $Ax^2 - 20x - 20 = 0$, has only one solution, i.e. $b^2 - 4ac = 0$

3

3

$$(-20)^2 + 80A = 0$$

$$80A = -400$$

$$A = -5$$

(c)

$$\int_{1}^{2} \frac{1}{3} e^{2.5x} dx = \frac{1}{3} \left[\frac{e^{2.5x}}{2.5} \right]_{1}^{2}$$

$$= \frac{1}{3} \left[\frac{e^{5} - e^{2.5}}{2.5} \right]$$

$$= 18.16 \text{ (correct to 2 decimal places)}$$

Q4 cont.../page 7

(b

$$\angle NLP = \angle$$

$$\angle NLP = 9$$
 $\angle OMP = 9$

$$0^{\circ} - x^{\circ} = 9$$

$$x^{o} =$$

Juestion 5

(i)

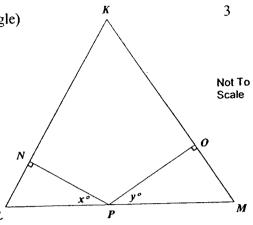
Marks

2

2

Question 4 (cont.)

(d)


 $\angle NLP = \angle OMP$ (equal angles in isosceles triangle)

$$\angle NLP = 90^{\circ} - x^{\circ}$$
 (complementary angle)

$$\angle OMP = 90^{\circ} - y^{\circ}$$
 (complementary angle)

$$90^{\circ} - x^{\circ} = 90^{\circ} - y^{\circ}$$

$$x^{o} = y^{o}$$

Question 5

(i) (a)

$$f(x) = (x-4)(x+2)^{2}$$

$$f(x) = (x-4)(x^{2}+4x+4)$$

$$f(x) = x^{3}+4x^{2}+4x-4x^{2}-16x-16$$

$$f(x) = x^3 - 12x - 16$$

$$f'(x) = 3x^2 - 12$$

$$f''(x) = 6x$$

(ii)

Let
$$f'(x) = 0$$

$$3x^2 = 12$$

$$x^2 = 4$$

$$x = \pm 2$$

At x = 2, f''(x) = 12 > 0 so min. turning point.

At x = -2, f''(x) = -12 < 0 so max. turning point.

(iii)

If
$$f''(x) = 0$$
 then

$$6x = 0$$

$$x = 0$$

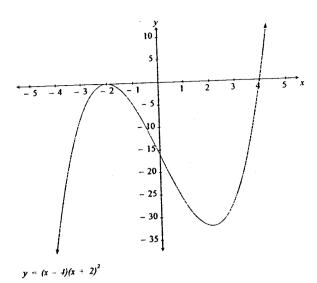
$$y = \left(-4\right)\left(2\right)^2$$

$$y = -16$$

Point of inflexion at (0,-16)

Q5 cont.../page 5

2


2

3

HSC Tria

Question 5 (cont.)

(iv) (a)

- If f(x) is concave up then f''(x) < 0, hence x > 0.
- Common ratio = $\frac{\sqrt{3}+1}{\sqrt{3}-1}$ (b)

$$r = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1}$$

$$= \frac{3 + 2\sqrt{3} + 1}{2}$$

$$= 2 + \sqrt{3}$$

$$T_4 = ar^{n-1}$$

$$T_4 = ar^{n-1}$$

$$= (\sqrt{3} - 1)(2 + \sqrt{3})^3$$

$$= 11\sqrt{3} + 19$$

As $|r| = |2 + \sqrt{3}| > 1$ then no limiting sum.

Question 6

Domain: (a)

Domain:
$$5-2x \ge 0$$

$$2x \le 5$$

 $x \le 2\frac{1}{2}$

Range:

 $y \ge 0$

Q6 cont.../page 6

- (b)
- - 14

Fo

Δ

- (c)
 - - (i)
 - (ii
 - (i

(i

- (d)

Question 6 (cont.)

(b) For
$$4x^2 - 12x + C = 0$$
 to have equal roots,

2

$$\Delta = b^2 - 4ac = 0$$

$$144 - 16C = 0$$

$$16C = 144$$

$$C = 9$$

(c) For
$$x^2 - 5x - 4 = 0$$
,

(i)
$$\alpha + \beta = -\frac{b}{a} = -\frac{(-5)}{1} = 5$$
.

1

(ii)
$$\alpha \beta = \frac{c}{a} = \frac{(-4)}{1} = -4$$
.

(iii)
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{5}{(-4)} = -\frac{5}{4}.$$

2

(iv)
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = (5)^2 - 2(-4) = 33$$
.

2

(d) If
$$(x-h)^2 = 4a(y-k)$$
 then for the parabola $x^2 = 8(y-3)$,

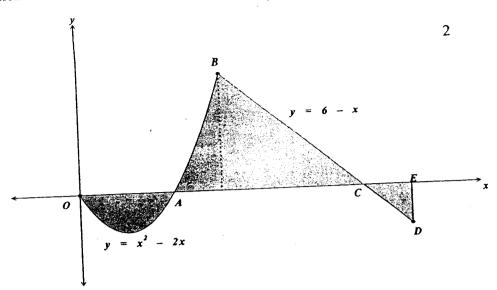
(i) Vertex =
$$(h, k) = (0, 3)$$

1

(ii) Focal length =
$$a = 2$$
.

1

(iii) Equation of the directrix:
$$y = k - a = 1$$


Q7.../page 10

ISC Trial

estion '

(iii

Question 7

(a) (i) At
$$A$$
,

$$x^{2}-2x=0$$

 $x(x-2)=0$, So, $A(2,0)$
 $x=0,2$

$$6-x=0$$
, So $C(6,0)$

At
$$D, x = 7$$

$$y=6-7=-1$$
, So, $D(7,-1)$

(ii) At
$$B$$
,

$$x^{2}-2x=6-x$$

 $x^{2}-x-6=0$
 $(x-3)(x+2)=0$, So, B (3, 3)
 $x=3,-2$
If $x=3$, then $y=3$

2

3

Q7 cont.../page11

(b)

(c)

Ouestion 7 (cont.)

(iii)

Area =
$$\begin{vmatrix} 2 \\ 5x^2 - 2x & dx \end{vmatrix} + \int_2^3 x^2 - 2x & dx + \frac{1}{2} \times (6 - 3) \times 3 + \frac{1}{2} \times (7 - 6) \times 1$$

= $\begin{vmatrix} \frac{x^3}{3} - x^2 \end{vmatrix}_0^2 + \begin{vmatrix} \frac{x^3}{3} - x^2 \end{vmatrix}_2^3 + \frac{9}{2} + \frac{1}{2}$
= $\begin{vmatrix} \frac{8}{3} - 4 \\ -0 \end{vmatrix} + \begin{vmatrix} \frac{(27)}{3} - 9 \\ -(\frac{8}{3} - 4) \end{vmatrix} + 5$
= $\begin{vmatrix} \frac{4}{3} + \frac{4}{3} + 5 \\ -7\frac{2}{3} \text{ square units} \end{vmatrix}$

(b) Typically, f(x) = kx, is one possible solution.

(c) (i)

$$A_1 = 100(1.005)$$

$$A_2 = (A_1 + 100)(1.005)$$

$$= 100(1.005)^2 + 100(1.005)$$

$$A_3 = (A_2 + 100)(1.005)$$

$$= (\$100(1.005)^2 + \$100(1.005) + \$100)(1.005)$$

$$= \$100(1.005)^3 + \$100(1.005)^2 + \$100(1.005)$$

$$= \$100(1.005)^3 + 1.005^2 + 1.005$$

(ii) If $A_n = 10000 , then

$$A_n = \$100 (1.005^n + 1.005^{n-1} + ... + 1.005)$$
$$= \frac{\$100 (1.005) (1.005^n - 1)}{0.005}$$

$$\frac{\$100(1.005)(1.005"-1)}{0.005} = 10000$$
$$1.005" = \frac{\$10000 \times 0.005}{\$100(1.005)} + 1$$

$$n = \frac{\log_{e} \left[\frac{\$10000 \times 0.005}{\$100(1.005)} + 1 \right]}{\log_{e} (1.005)}$$

n = 80.96

n = 81 months

Q8.../page 12

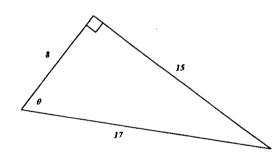
2

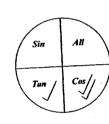
Question 8

(a)

$$\frac{d\left(\log_{e}\left(\cos^{3}x\right)\right)}{dx} = -\sin x \times 3\cos^{2}x \times \frac{1}{\cos^{3}x}$$

$$= -3\frac{\sin x}{\cos x}$$


$$= -\tan x$$


Mathematics

If $\cos \theta = \frac{8}{17}$ and $\sin \theta < 0$, then $\frac{3\pi}{2} \le \theta \le 2\pi$ (see diag) (b)

Using Pythagoras' theorem,

$$x^2 = 17^2 - 8^2$$
$$x = 15$$

(i)
$$\sin \theta = -\frac{15}{17}$$

2

(ii)
$$\cot \theta = -\frac{15}{8}$$

1

(c) (i) For the curves,
$$y = x^2$$
 and $y = \frac{8}{x}$,

$$x^2 = \frac{8}{x}$$

So, (2, 4) is the point of intersection.

$$x = 2$$

y = 4

(ii) For
$$y = \frac{8}{x}$$
, $\frac{dy}{dx} = -\frac{8}{x^2} = -\frac{8}{4} = -2$ [m₁]

2

For
$$y = x^2$$
, $\frac{dy}{dx} = 2x = 4$[m₂]

Q8 cont.../page 13

Questio

HSC Tria

Q8 (com

(c)

(a)

(ii)

that

From th

|2x+3|

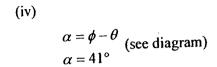
has no

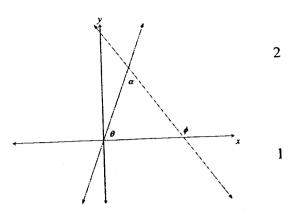
(b)

(ii)

Total A

= 581


Q8 (cont.)


(c) (iii)

$$an \theta = 4$$

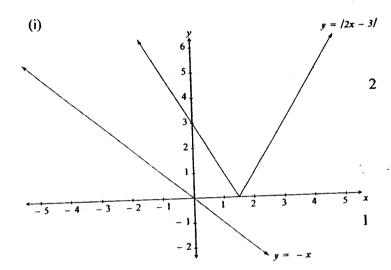
 $an \theta = 76$ ° (to nearest degree)

$$\tan \phi = -2$$

$$\phi = 117^{\circ}$$
 (to nearest degree)

Question 9

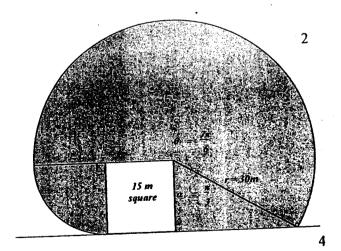
(a)


(ii)

From the graph it can be seen

that

$$|2x+3|<-x$$


has no solutions.

(b)

Total Area =

$$\frac{\frac{7\pi}{6} \times 30^2}{2} + \frac{15^2 \times \pi}{4} + \frac{1}{2} \times 30 \times 15 \times \sin \frac{\pi}{3}$$

= $581\frac{1}{4} + 225\sqrt{3}$ sq. m.

Q9 cont.../page 14

(i)

3

SC Trial S

uestion 9

b)

sho

(i)

(v)

Q9 (cont.)

(c)
$$P = P_o e^{kt}$$
, if $P_o = 20$, and $P = 100$ when $t = 3$.

$$100 = 20e^{3k}$$

$$e^{3k}=5$$

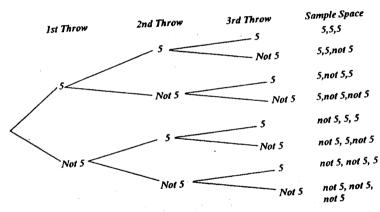
$$k=\frac{\ln 5}{3}$$

Thus, if P = 2000 then

$$20e^{ki}=2000$$

$$e^{kt}=100$$

$$kt = \ln 100$$


$$t = \frac{\ln 100}{k}$$

$$t = \frac{3\ln 100}{\ln 5}$$

 $t \approx 9 \text{ months}$

Question 10

(a)

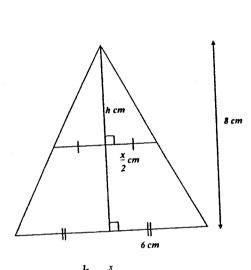
- (i) P(one 5) = $\frac{2}{7} \times \frac{5}{7} \times \frac{5}{7} + \frac{5}{7} \times \frac{2}{7} \times \frac{5}{7} + \frac{5}{7} \times \frac{5}{7} \times \frac{2}{7} = \frac{150}{343}$
- (i) $P(\text{one } 5) = \frac{5}{7} \times \frac{7}{7} \times \frac{7}{$
- (ii) $P(\text{no } 5'\text{s}) = \frac{2}{7} \times \frac{7}{7} \times \frac{7}{7} = \frac{2}{343}$ (iii) $P(\text{at least one } 5) = 1 - P(\text{no } 5'\text{s}) = 1 - \frac{125}{343} = \frac{218}{343}$
- (iv) P(at least one 5) = $1 \left(\frac{5}{7}\right)^n$

Q10 cont.../page 15

1

Question 9 (cont.)

(v) If P(at least one 5) > 0.99 then

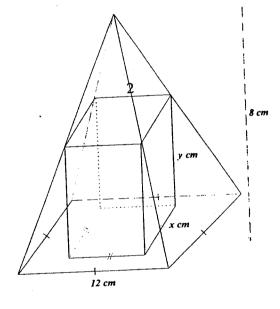

$$1 - \left(\frac{5}{7}\right)^n > 0.99$$

$$\left(\frac{5}{7}\right)^n < 0.01$$

$$n = \frac{\log 0.01}{\log \left(\frac{5}{7}\right)}$$

 $n \approx 14$ (nearest whole number)

- (b) A rectangular prism is constructed within a square-based triangular pyramid as shown in the diagram:
 - (i) By taking a vertical section through the prism:



$$8 = 6$$

$$h = \frac{2x}{3}$$

$$y = 8 - h$$

$$y = 8 - \frac{2x^2}{3}$$

2

Q10 cont.../page 16

Q10 (cont.)

(b)

$$V = x^{2}y$$

$$V = x^{2} \left(8 - \frac{2x}{3}\right)$$

$$V = 8x^{2} - \frac{2x^{3}}{3}$$

$$\frac{dV}{dx} = 16x - 2x^{2}$$

$$\frac{dV}{dx} = 2x(8 - x)$$

$$\frac{dV}{dx} = 0$$

$$2x(8-x) = 0$$
$$x = 0 \text{ or } 8$$

$$\frac{d^2V}{dx^2} = 16 - 4x$$

$$dx^2$$
If $x = 8$ then $\frac{d^2V}{dx^2} < 0$

Maximum volume =
$$64(8 - \frac{2 \times 8}{3})$$

$$=170\frac{2}{3}$$
 cm³

END OF EXAMINATION

2

Redda Mathe

Math

GENERAL

- Read
- Worki
- Write
- Board used
- A tab
- All ned